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NASA Lewis Research Center, Cleveland, Ohio

Abstract

Version 3.1 of the NPARC computational fluid

dynamics flow solver introduces a capability to solve

unsteady flow on moving multi-block, structured

grids with nominally second-order time accuracy.

The grid motion is due to segments of the boundary

grid that translate and rotate in a rigid-body manner

or deform. The grid is regenerated at each time step
to accommodate the boundary grid motion. The

flow equations and computational models sense the

moving grid through the grid velocities, which are
computed from a time-difference of the grids at two
consecutive time levels. For three-dimensional flow

domains, it is assumed that the grid retains a pla-

nar character with respect to one coordinate. The

application and accuracy of NPARC v3.1 is demon-

strated for flow about a flying wedge, rotating flap, a

collapsing bump in a duct, and the unstart / restart

flow in a variable-geometry inlet. The results com-

pare well with analytic and experimental results.

Introduction

Version 3.11 of the NPARC 2'3 computational

fluid dynamics (CFD) flow solver was released in Oc-
tober 1997 with modifications that enhance the ca-

pability to solve unsteady flows and introduce a ca-

pability to simulate flows with moving, multi-block,

structured grids. This paper discusses those modifi-

cations, explains the approach for defining the mov-

ing grid problem, and presents several test cases
that demonstrate the application and accuracy of

NPARC v3.1 for moving grids.

Moving grids in CFD arise when there is motion

of a region of the flow domain relative to the rest
of the flow domain. An example is a flow domain

about a high-speed, variable-geometry, axisymmet-
ric inlet. The centerbody of the inlet may translate
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and collapse as part of the restart operation for the

inlet once it has unstarted. The grid block contain-

ing the centerbody may deform to accommodate the
centerbody motion. Such grid motion is considered

moderate in that the magnitude of the motion is
less than the scale of the block dimensions and the

topology of the block remains intact.

NPARC v3.1 assumes that there are moderate

levels of grid motion associated with the motion of

segments of the boundary grid relative to the rest of

the grid of the block. This motion may be a rigid-
body translation and / or rotation about a point or

a deformation of the segment according to a coded

relation. The remainder of the grid of the block de-
forms to accommodate the boundary motion. This

requires that some regions of the grid be regenerated

at each time step. Efficiency in the grid regenera-

tion process is obtained by limiting the regeneration

to only those regions in which there is grid motion.

Thus, the grid becomes a computed function of time.

The flow equations and boundary conditions are ex-

pressed in terms of an absolute frame of reference

with the grid motion accounted for through the grid
velocities. The velocity of each grid point can be

calculated from a time difference of the grids at two
consecutive time levels. For three-dimensional flow

domains, the grid is assumed to be "quasi-2d" or ax-
isymmetric in which the grid consists of planar grids

with respect to the 'T'-coordinate.

The flow equations and physical models are first

presented in integral form for a deforming control
volume to show the influence of the velocities of the

control surface. The finite-difference approximations

are then discussed to show how the grid velocities in-

fluence the computational methods. The approach

for defining the moving grid problem within NPARC
v3.1 is then discussed. Several test cases involving

moving grids are presented to demonstrate the appli-
cation and accuracy of the moving grid capability. A

few simple test cases involving supersonic flow over
a stationary wedge, a flying wedge, and a rotating

flap on a fiat plate allow comparison with steady-

state oblique shock theory. A test case involving

the collapse of an axisymmetric bump in an annu-
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larductallowcomparisonwithunsteadyexperiment
data. Thesimulationof theunstart/ restart op-
eration of the NASA variable diameter centerbody

(VDC) inlet provides a more complex application.

Flow Equations

The governing equations of the fluid flow are the

Reynolds-averaged Navier-Stokes equations. To ac-

count for moving grids, the flow equations are writ-
ten in an absolute frame of reference with the al-

lowance that the control volume may deform in time.

The integral form of the equations allowing for de-

formation can be expressed as

Q, + R = S (1)

where t is time and

Q= /v Q dV and /_=_s H.f_dS. (2)
(t) (_)

The V is the volume and S is the surface of the

control volume. The h is the surface normal vector.

The S is the axisymmetric source term

= s0(0,0, v, 0) (3)

which accounts for the surface integrals for the cir-
cumferential surfaces of an axisymmetric control vol-

ume. The So is the area of the circumferential plane.

The p is the static pressure. For two-dimensional
and three-dimensional flows, S is the zero vector.

The Q is the algebraic vector of conservative vari-

ables,

where p is the density, V = u i + v j + w k, and u, v,

and w are the flow velocity components, respectively.

The Et is the total energy per unit volume,

1

E, = _ + _pf-f. (5/

The H is the flux dyadic, which for a mixed Eulerian-

Lagrangian description 4 is,

H = F-_Q. (6)

The g is the velocity vector of the control sur-
faces, _ = xti + y_j + zt]¢. An Eulerian description

is obtained for g = 0 while a Lagrangian description

is obtained for _ = V. The F is the Cartesian flux

dyadic.
One can express the integral form of Eq.(1) in a

differential form,

O_QQ+ v. r = 0 (7)
Ot

which represents the fluid at a point and no longer

contains direct information of the moving flow do-
main. The next section will discuss the coordinate

transformations that will reintroduce the grid veloc-

ity terms to account for the boundary motion.

The flow model is complete with Sutherland's

formula, the definition of the Prandtl number, and a

perfect gas assumption. Turbulence models solve for

the turbulent eddy viscosity. No modifications were
made to the turbulence models of NPARC v3.0 to

account for the effects of the moving grids on the

convection of turbulent quantities. The significance

of neglecting the convection of turbulent quantities
due to the grid motion when using the one- or two-

equation models has not been investigated in this

work. The specification of boundary conditions and

an initial solution then close the system of equations.

Computational Methods

The flow equations as presented in Eq.(7) are

now discretized upon a structured grid using a finite-

difference approximation. Terms due to the grid mo-

tion appear. NPARC solves the flow equations us-

ing a time-marching approach which starts with a

known grid and solution. For unsteady flow simula-
tion, a time step, which must be uniform over all the

grid points, is determined and the flow equations are

integrated to the new time level. For moving grids,

the grid motion is defined such that the grid at the
new time level is known, thus the grid velocities can

be computed from a time difference over the time

step interval. The modifications to the computa-

tional methods of NPARC version 3.0 required to

account for moving grids are discussed in this sec-
tion.

Finite-Difference Form

Eq.(7) is transformed from the physical coordi-

nate system (t, x, y, z) to a computational coordinate

system (r, _, r/, _) to allow for the body-conforming
coordinate system used in NPARC. The transfor-
mation is defined such that r = $. The transformed

equation can be put into strong conservation law
form in which

opt
Q, = Q/J and /_ - 0_j" (8)

where the generalized flux components for a time-

varying grid are

1 og_j



where the generalized and physical coordinates are

_j E (_, r/, _) and xj E (x, Y, z), respectively.

The O_j �Or are the time metrics of the transfor-
mation and are evaluated as

_, = - xT_, - y_ - zT_ (10)

r/,=- z, rl_- y,r/v- z,r/, (11)

and

_t = - Xr_x - Yriy - Zr_z (12)

where (_x, _u, _z, r/x, r/u, r/z, _x, _u, iz) are the spatial
metrics and are defined in Ref. 2. For a planar

domain, the time metrics reduce to

_, = -- Xr_x -- Yr_v (13)

and

r/, = - x, r/_ - y_ r/v (14)

Within NPARC, the finite-difference representa-

tion of the above equations are approximated spa-

tially through the use of a second-order, central-
difference. The viscous fluxes are evaluated explic-

itly using a second-order, central-difference. Second
and fourth-order artificial dissipation are used to sta-

bilize the flux computation. Further details on the

methods used in NPARC are presented in Ref. 2.

Newton Iterative Method

NPARC v3.0 used a penta-diagonalized approx-

imate factorization of the Euler implicit time dif-

ference to efficiently converge to a steady-state
solution. NPARC v3.1 introduces a three-level,

backwards time difference with a Newton iterative

method to provide for nominally second-order time

accuracy. Such a procedure has been presented in
several references 5'6'T. The iterative equation as-

suming a constant time step is

2_ OA _ zxQ _ =I + 3 0_

2Ar (kin_
- g g 05)

where .A is the Jacobian of P and m is the sub-

iteration index. Within NPARC v3.1, the effects

of non-constant time steps are included. The New-
ton iterative method takes advantage of the exist-

ing NPARC solver with only minor modifications.

Eq.(15) is iterated at each time step until the right-
hand-side, which is the discrete form of the flow

equations, essentially becomes zero, which assures

that Eq.(1) is essentially satisfied at each time step.

This generally requires only a few sub-iterations at
each time step since the initial solution is usually
close to the solution at the new time. Nominally,

second-order time-accuracy is obtained through the

sub-iterations even though the diagonalization is not
second-order time-accurate. Further time-accuracy

issues are discussed by Pulliam 5.

The Newton iterative method is used in NPARC

v3.1 when ISOLVE = 2. A new input variable

_ISUBMX indicates the maximum number of sub-

iterations that are allowed at each time step. The

input variable TOLSUB indicates the maximum tol-

erance on the iteration residual (displayed as L2

RESIDUAL in the output) at which the sub-iterations
would cease.

The sub-iterations are performed on a block level,

and so, information at the block boundary lags in

time by at least one time step. Therefore, time ac-

curacy will decrease at the block boundaries and it

is suggested that block boundaries not be placed in

regions where the time resolution of unsteady flow
is desired•

Explicit, Multi-Stage Methods

The explicit, multi-stage methods of NPARC
v3.0 can be used for second-order, time-accurate

•computations with moving grids. These methods are
used when ISOLVg = 3, 4, or S. However, the CFL

condition limits the stable time step size, which was
the reason the Newton iterative method was added

in NPARC v3.1.

Flow Boundary Conditions

For NPARC, the boundary conditions are im-

posed explicitly. Temporal errors are reduced at
the boundaries through the multi-stage procedures

of the explicit methods and the iterative procedures
of the Newton iterative method.

The flow boundary condition at the solid wall

is the primary mechanism through which the flow
senses that a boundary is in motion• The inclusion

of the grid velocity vector _ accounts for the motion
of the boundary. The single physical flow boundary

condition for a slip solid wall is

(e - =o
which states that the component of the fluid velocity
in the direction of the surface normal vector/_ must

match the component of the grid velocity vector in
the direction of the surface normal vector. An addi-

tional physical boundary condition that exists with



thecaseofa noslipwallis

- --0
which with Eq.(16) results in the condition

_? = _. (18)

For other boundaries which may be in motion,

the flow boundary conditions are modified by using

the velocity at the boundary relative to the moving

boundary. Thus, the convective velocity of interest

is that relative to the moving boundary.

Geometric Conservation Law

The deformation of the grid is a source of pos-

sible errors. One must require that a uniform flow

be preserved independent of the grid motion. This

is stated in the geometric conservation law s (GCL)

which essentially relates the change in volume of the
cell to the motion of the cell faces,

= _. ¢_dS. (19)
dt (t)

The geometric conservation law for the finite-

difference form of Eq.(1) is

(y-1)_ = (_,/j)_ + (_,tj)_ + (_/y)_. (20)

Applied to the implicit, Newton iterative

method, the GCL can be used to find the Jacobian

which yields uniform flow

(r-1_-+1 4
JaCL = _ (j-l),

1 (j-i),-1 + 2At (j-1)_+1 (21)-_ --5- "

The term (J-1)rn+l is obtained by evaluating

Eq.(20) using a second-order central-difference. The

equation is an explicit expression because the grid

and grid velocity are known for the new time level
Tn'+ l .

At each time-level, the new value of 0 can be

evaluated as

0,+1 = _)n+l j,_+XGCL/ j,_+XGR_D (22)

where ja+l is the Jacobian as computed from theGRID

known grid at time level (n + 1). The new solution
is then decoded as

Q,+I = 0,+1 r-+l (23)"GRID"

For the Euler implicit method, the Jacobian for

the geometric conservation law is determined from

(_'--l_n+l ___ (j-1)n _ AT (J-1)7+1 (24)_" ]GCL

For the explicit, multi-stage methods, the Ja-

cobian for the geometric conservation law is deter-
mined from

(.]-1).+1 = (j-l)= _ Ar(J-X)_. (25)GCL

AT

where

Time Control and Step Size

NPARC v3.0 uses local time step sizes to en-

hance convergence to steady-state; however, an un-

steady flow simulation requires a spatially uniform

time step size. The option IVAttDT = 0 allows a con-

stant and uniform time step size to be input through
the variable DTCAP; however, the time step size can

not adjust to unsteady flow conditions. The op-

tion IVARDT = 4 allows adjustment; however, it does

not assure that the time step size is uniform across
blocks.

NPARC v3.1 adds several options for specifying

the uniform time step size across all the blocks. The

option IVARDT = S examines all the blocks and picks
out the minimum time step size based on the CFL

condition and specified CFL number input through
the variable DTCAP,

DTCAP

I 3,,,cot,,ti¢ I,_ax (26)

_oo_,,,¢ = IUI + _ _ (27)

where U is the contravariant velocity, s is the L_

norm of the metrics. For the _-direction, these are

U = & +_u +_v +&w (28)

and

, = ( e_+ _ + ,q )1/_. (29)
Similar expressions can be applied in the r/ and (
directions.

The option IVARDT = 6 considers only the con-

vective portion of the eigenvalues when computing

the time step size using the CFL condition,

AT(J,K,L ) = 1 / max([U[, [Y[, ]W]). (30)

This restriction simply limits the time step size such
that a fluid particle will not traverse a distance

greater than the length of the cell. Thus, the overall

time step size is limited by time accuracy consider-

ations rather than the numerical stability.

NPAR.C v3.1 allows the simulation start time,

TSTART, and end time, TFINAL, to be specified in

the input file. For an unsteady flow simulation, the

physical time is displayed to the standard output

unit. When this time reaches TFINAL, the computa-

tion will stop, unless the maximum number of time



stepsasspecifiedbytheinputvariableNMAX has been
reached first.

Grid Speeds

The grid velocity vector is computed from a first-
order, forward time difference of the grids at two
consecutive time levels

= ( e.+l _ e. ) / (31)

where g is the position vector for the grid points.

Restart File

The initial grid and solution are input to NPARC

through the restart file (fort. 2). A new format for
the restart file is introduced in NPARC v3.1 to allow

the current non-dimensional time and time step to

be listed in the first line. Also, the grid velocities can

be specified for problems involving the rigid-body

motion of the grid when IGI_YN = 1. A solution

from the previous time step can also be included,
which is needed when restarting a computation us-

ing the Newton iterative method. NPARC v3.1 can
automatically detect which format is used. The in-

put variable TRSTFL forces the restart file to be writ-
ten using the new format. Further details on the
new format can be found in the NPARC v3.1 user's

guide I .

Moving Grids

The previous sections discussed how the grid ve-
locities are used within NPARC v3.1. This section

discusses the details of the approach for specifying

the grid dynamics problem and the methods for de-

termining the grid distribution at each time level.

Grid Motion

The approach involves starting with the grid as
read in from the restart file and defining the motion

of that grid. Several types of grid motion are possi-
ble and the input variable IGRDYNindicates the type

of motion of the grid:

A value of IGIIDYN = 0, which is the default,

indicates that the grid should remain stationary

throughout the computation. The grid velocities are
set to zero and no grid regeneration is performed.

A value of IGltDYN = 1 indicates that the entire

grid can undergo rigid-body translation and / or ro-
tation depending on the values of the grid velocities

as read in from the restart file. The grid velocities

are the absolute velocity components at each grid

point as determined from rigid-body dynamics. The

values of the grid velocities remain constant through-

out the computation and no grid regeneration is per-
formed.

A value of IGRDYI_ = 2 indicates that one or more

segments of the boundary grid translate, rotate, or

deform relative to the rest of the grid. The pa-

rameters defining the dynamics of these segments

are specified through the grid dynamics input file

(fort. 54). The grid becomes an explicit function of

time. The grid is regenerated to obtain the grid at

the new time level, _+1, if there is boundary motiorr
over the current time step. The grid speeds are com-

puted from a time difference of the two grids. Two

types of relative motion are possible. The first type

is when a segment translates and rotates as a rigid-

body relative to the rest of the boundary grid. The

second type is when the segment deforms relative to
itself and the rest of the boundary grid.

Grid Dynamics Input File (:fort. 54)

When IGItDYN = 2, NPARC v3.1 reads file

_or'c.S4 for the input parameters defining the dy-

namics of the moving boundary grid segments. The

grid as read in through the restart file is taken as the

state of the grid at the time specified in the restart

file. The initial grid velocities may also read in from
the restart file. The dynamics of the grid is defined

by specifying which segments of the boundary grid
are in motion, the type of motion, and time sched-

ules for the motion. The segments are specified by

listing for each segment the block and (j, k) range.

The segment must be along a constant j or k line
and on the boundary. The segment may be one of

three types:

Rigid. The segment translates and rotates about

a defined rotation point. The additional inputs re-

quired are a rotation point and a schedule defining
the translation and rotation with respect to time.

Variable. This segment can change shape to adjust
the domain boundary to the motions of the rigid-

body segments. The variable segment is defined by

a cubic-spline using end position and tangent con-
ditions. The additional inputs required include the

type of end tangency conditions. The options in-
clude that the ends are not tangent, the ends re-

main tangent to the original segment, the ends re-

main tangent to the adjacent segments, or the ends
remain normal to the adjacent segments (which is

useful at intersections of block faces).

Deforming. This segment can deform according to
a coded relation in the subroutine deform.f. Within

NPARC v3.1 the subroutine deform.f is coded to

solve the test ease of a flexible bump collapsing in a



annularductasdescribedin a sectionbelow.One
cancodeadifferentdeformationintodeform.fand
thenrebuildtheNPARCexecutable.

Onecanreferto Ref. 1 for detailedinforma-
tiononformof thegriddynamicsinputfile.Asan
example,considerFig. 4 whichshowstheinviscid
gridfortheflapdeflectionproblemdiscussedbelow.
Threedynamicsegmentsweredefined:arigidseg-
mentfortheflapwhichrotatesaboutthecoordinate
(0.6,0.0)andtwovariablesegments.Thefirst vari-
ablesegmentattachestheflap to theforwardpor-
tionof theflat plate.As theflaprotates,thevari-
ablesegmentprovidesa smoothconnectingsurface.
Thesecondvariablesegmentis theoutflowbound-
arywhichmovesto accommodatetheflap rotation
insuchamannerthatthegridqualityismaintained.

Grid Regeneration

When ISOLVE = 2 and there exists some motion

of the boundary segments over the time step, the

grid is possibly deformed at each time step and must
be regenerated at each time step. NPARC v3.1 in-

cludes an automated procedure to determine if any

of the segments are in motion and regenerate the

grid. The grid is regenerated using an efficient, al-

gebraic, transfinite interpolation method and is only

regenerated in those regions of the grid block with

moving segments. This reduces the computational
effort. For three-dimensional grids, it is required

that the grid be "quasi-2d", which is specified by the

input variable IGRDAX = 0, or axisymmetric, which
is specified by IGRDAX = 1, within those blocks with

moving boundaries. Thus, the boundary motion and

grid regeneration remains a planar grid problem.

Output Options

Several options exist for providing output when

there are moving grids. First, one can set ISOLVE

= 0 to perform the time-marching without comput-

ing the solution, but still create a time-varying grid.
This allows one to check that the time-varying grid

is being generated properly prior to beginning the

flow computation. The output option NQFR_.t_allows

grid and solution files to be written using the Plot3D
file format at intervals of time steps. The file names

are u###x, dat and u###q, dat where ### is an in-

dex indicating the sequence number. These files may

be used to observe the time history of the grid and

solution and perhaps be part of an animation.

Test Cases

Several test cases involving moving grids are now

presented to demonstrate the application and accu-

racy of NPARC v3.1. All of the results were gener-

ated using a three-dimensional grid and NPARC3D

v3.1. Unless specified otherwise, the computations
used the Newton iterative method. Further discus-

sion of these test cases and others can be found in

the NPARC v3.1 user's guide 1.

Flying Wedge

This test case involves a wedge of a half-angle of

15 degrees in an inviscid flow of Mach 2.5 relative to

the wedge. The pressure ratio across the oblique

shock and the Mach number behind the oblique
shock are obtained from oblique shock theory 9 and

are presented in the first row of Table 1. Applying
the Galilean transformation, one can view this prob-

lem as a stationary wedge in the absolute frame of
reference with a Mach 2.5 flow past the wedge or

as a moving wedge flying at Mach 2.5 through sta-

tionary air. Using the later view with NPARC v3.1
allows a demonstration of the ability to specify the

grid velocities through the restart file and model a

rigid-body motion of the entire grid. Computations
were performed for both views using the Euler im-

plicit method (ISOLVE=I) and local time stepping

since only the steady-state was of interest. Fig. 1

shows the grid for the flow domain in which the lead-

ing edge of the wedge is at z = 1.0.

Table 1. The results for a 15 degree

wedge in Mach 2.5 flow.

P/Poo Mach %Error

Theory 2.468 1.874

Stationary Wedge 2.470 1.896 1.17

Flying Wedge 2.470 1.897 1.23

Inviscid Flap 2.470 1.907 1.76

Turbulent Flap 2.485 1.893 1.03

I I I

o_ l_ _o

Figure 1: The grid for the 15 degree wedge.

The results of the stationary wedge case are pre-

sented in row 2 of Table 1. The pressure ratio shows

excellent agreement with theory. The third column



ofTable1presentsthepercentageerrorbetweenthe
computedandtheoreticalMachnumber.Sincethe
pressureratiofor thisandtheothercasescompare
verywell,theirerrorsarenotreported.

For the flying wedgecase,the grid velocities
arespecifiedasMach2.5and remainedconstant
throughoutthe computation. The input variable
IGRDYN = 1 and the initial restart file is created us-

ing the new format containing the grid velocities.

Fig. 2 shows the Mach number contours of the flow-
field to provide an overall picture of the computa-
tional results.

Mach Number

Figure 2: The Mach number contours for the

flying 15 degree wedge.

The computed pressure and density distributions

along surface of the wedge are identical for both the

stationary and flying wedge cases. However, Fig.

3 shows a significant difference in the Mach num-
ber distribution due to the fact that for the flying

wedge problem, the velocities on the wedge surface

are imposed as part of the boundary condition. Ta-

ble 1 shows good agreement of the pressure ratios
and Mach numbers behind the shock between the

stationary and flying wedge cases.

Flap

A simple case involving the relative motion of a

segment of the boundary grid is the rotation of a

flap on a fiat plate through an angle of 15 degrees in
a flow of Mach 2.5. Fig. 4 shows the outline of the

flow domain of the flat plate prior to rotation and

the grid after rotation. The flat plate is 1.2 units

long with the aft 0.5 units being the flap. The flap
rotates within 1.0 nondimensional time units and is

specified to rotate about a fixed rotation of (0.6,0.0)
units.

Once the flap has rotated, the flow approaches a

steady-state flow with an oblique shock of the same

strength as the wedge problem above and same an-

alytic solution. The flap segment is defined to be

a rigid segment with the indicated rotation and ro-

tation point. Two variable segments are defined to

2.75

2.._)

E

2_ 2.25

2.00

1.750. 0 05

-- Theory

o Static Wedge

o Flying Wedge

o

o

0
0
o

1.0 1.5 2.0

X

Figure 3: The variation of the Mach number

along the surface of a 15 degree wedge.

attach the flap to the flat plate and to" allow the

outflow boundary to deform with the flap motion,

respectively, and are identified in Fig. 4. For the

computation, IGKDYN = 2 and IVARDT : 5. Both

inviscidcase and turbulentflow case,which used the

Baldwin-Lomax turbulencemodel, were computed.

Fig. 5 shows the Mach number contours for the in-

viscidcase flowfieldto providean overallview ofthe

flowfield.Table I shows the computed the pressure

ratioand Mach number behind the obliqueshock for

the steady-statesolutions,which compare very well

with theory.

Collapsing Bump in a Duct

This case demonstrates the abilityof NPARC

v3.1 to solve the unsteady flow with a deforming

boundary segment. An axisymmetric bump on the

hub of an annular duct collapseswithin 0.8 milli-

seconds (msec) instationaryflow conditions.Once

collapsed,the bump forms a cylindricalsectionflush

with the hub. Fig. 6 shows the grid near the bump

forseveraltimes during the bump collapse.

The bump collapsecreatesacousticdisturbances

which propagate away from the bump and towards

the ends of the annular duct. Fig. 7 shows the

pressurecontours at severalinstancesin time with

the initialstationaryflowfieldat the leftof the fig-

ure. The pressure contours near the bump collapse

show both radialand axial variations;however as

the acousticdisturbancespropagate toward the end

of the duct, the disturbancesobtain a planar char-

acter.

This case was the product of experiments con-

ducted at the University of CincinnatiI° and the

subject of detailedcomputational analysis in Ref.



Figure4: The grid for the inviscid case for the

flap at 15 degree rotation in Mach 2.5 flow.

7. The experiment provided the time variationof

the pressure at a few sensor locationsalong the

duct. Fig. 8 shows the comparison between the

computed and experiment unsteady pressuresatone
of those sensor locations. This case demonstrates

the applicationof NPARC v3.1 for solving prob-

lems with deforming boundary grid segments with

IGRDYN= 2. The three-dimensionalflowfieldwas

computed with the assumption of an axisymmet-

ric,three-dimensionalgrid using the input variable

IGRDAX = I. The grid dynamics input fileincluded

one deforming segment. The deformation was com-

puted usingthe relationscoded intothe deform sub-

routineofthe dgmod.f fileof NPARC v3.1.

High-Speed Inlet Restart

A more complex testcaseinvolvingmultiplegrid

blocks is the unstart i/restartoperation of the

NASA variablediameter centerbody (VDC) inletn.

The NASA VDC inletisan axisymmetric, mixed-

compression inlet.In normal cruiseoperations,the

Mach 2.5 freestream flow iscompressed both exte-

riorand interiorto the inletand a normal shock is

positionedjust aftof the throat.The analysishere

assumes inviscidflow.

The steady-state,supercriticalflowfieldwas first

computed using the Euler implicitmethod (ISOLVE

= I) with localtime stepping. The Chung-Cole

compressor faceboundary conditions (BCTYPE = 4),

which was alsointroduced inNPARC v3.1,was ap-

pliedwith a compressor face Mach number of Mach

0.3.

The unstart was initiatedby a 5% decrease in

the compressor-faceMach number, which reducesto

Mach Number

Figure 5: The Mach number contours for the

flap at 15 degree rotation in Mach 2.5 flow.

a value of Mach 0.285. The normal shock is pushed

forward past the throat and is expelled from the in-
let.

The restart operation is initiated by increasing
the Mach number at the compressor face to a value

of Mach 0.5, which simulates the opening of bypass

doors. The inlet geometry is varied by translating
the centerbody forward 0.2 units and rotating the

forebody cone from 18.5 degrees to 12.5 degrees to
increase the throat area. The shock moves down-

stream and is reformed within the subsonic diffuser

of the inlet. Once a normal shock is again formed in

the diffuser, the inlet is returned to its cruise config-
uration.

The three-dimensional flowfield was computed

with the assumption of an axisymmetric, three-

dimensional grid using the input variable IGRDAX =

1. The grid dynamics input file included three rigid

segments for the nose cone, forebody cone, and aft
cone. The nose cone simply translated while the

forebody and aft cones also rotated about their re-

spective rotation points. Three variable segments
were defined to connect the nose cone to the inflow

boundary, connect the forebody cone to the aft cone

(which physically is the bleed slot region), and con-
nect the aft cone to the compressor face boundary.

Fig. 9 shows the extent of the grid motion by show-

ing the grid near the entrance of the inlet at the

cruise configuration and at the restart configuration
with the centerbody translated and forebody cones

rotated. The bleed slot region is identified to bet-
ter see the extent of the translation and the increase

in the throat area due to the rotation of the fore-

body and aft cones. Note that the grid regeneration

method retains good grid quality. The grid consists
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t 0.8 msec I

Start of Bump End of Bump

Figure 6: The time history of the grid through

the bump collapse (top-bottom: t=0.0 msec,

t--0.2 msec, t----0.4 msec, $--0.6 msec, t----0.8

msec).

of three blocks with block 1 extending axially along

the centerbody and the interior of the cowl. Blocks 2
and 3 form the exterior flow area and do not involve

any grid motion.

Fig. 10 shows a series of Mach number contours

during the unstart / restart operation to provide an
overall view of the unsteady flowfield. The move-
ment of the shock wave structure can be seen. The

centerbody is collapsed between the time from L-30
msec to the time of t--51 msec. Thus in Fig. 10,

the centerbody is fully collapsed at a time of t-'-4.0

msec. The centerbody geometry variation presented

in Fig. 10 occurs much faster than would occur in

the actual inlet. This was done for computational

convenience. However, the unsteady motion of the
shocks is reasonable. There is no experiment data

available for comparison; however, the results seem

reasonable and provide a demonstration of the mov-

ing grid capabilities of NPARC v3.1.

Summary and Conclusions

A moving grid capability for NPARC has been in-
troduced in version 3.1 and can be used to simulate

the unsteady flow on a moving multi-block, struc-

tured grid with second-order time accuracy. It is as-

sumed that a three-dimensional grid is "quasi-2d" or

axisymmetric in the moving grid regions. The mod-
ifications to NPARC v3.0 to account for the moving

grid and the approach for defining the moving grid

problem was discussed. Simple test cases involving

supersonic flow over a wedge and flow about a rotat-

ing flap showed good comparison with oblique shock
theory. A test case involving the collapse of an ax-

isymmetric bump in an annular duct showed excel-

lent agreement with experiment data. The unstart

/ restart operation of the NASA variable diameter
centerbody (VDC) inlet, which involved the trans-

lation and collapse of the centerbody, was demon-

strated to show qualitative agreement with experi-

mentally observed behavior.
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Figure 8: The comparison between the com-

puted and experiment time history of the
static pressure at the sensor location.

Figure 9:The grid for the NASA VDC inletin

the region of the inlet entrance for the cruise

configuration (top) and the restart configura-

tion (bottom) with the location of the bleed

slot identified.
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Figure i0: The Mach number contours for

the unstart / restart operation of the NASA
VDC inlet.
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